Transcriptional regulation of human pulmonary surfactant proteins SP-B and SP-C by glucocorticoids.

1996
https://researcherprofiles.org/profile/1359428
8652188
Ballard PL, Ertsey R, Gonzales LW, Gonzales J
Abstract

Expression of the pulmonary surfactant-associated proteins SP-B and SP-C is under both developmental and hormonal regulation. We used human fetal lung to investigate developmental changes and the mechanism of glucocorticoid stimulation of SP-B and SP-C gene expression. There were similar approximately 3-fold increases in SP-B cytoplasmic mRNA content and transcription rate comparing lung samples of 24 wk versus 16 wk gestation. During 5 days of lung explant culture without hormones, the transcription rate increased for SP-B and decreased for SP-C, paralleling changes in mRNA content. Treatment with 100 nM dexamethasone maximally increased transcription of the SP-B gene (approximately 3-fold) and SP-C gene (approximately 11-fold) after 2 and 8 h, respectively, similar to changes in mRNA content. In dose-response studies, the maximal increase in transcription rate occurred at approximately 10 nM dexamethasone for SP-B and at > or = 100 nM for SP-C. Induction of SP-B mRNA content and transcription rate were not affected by prior cycloheximide exposure, whereas induction of SP-C mRNA was decreased by as little as 1 h exposure to inhibitor. We conclude that glucocorticoids, acting directly in type II cells, regulate the SP-B and SP-C genes primarily at the level of transcription. Induction of SP-C, but not SP-B, requires ongoing protein synthesis which likely reflects involvement of a labile transcription factor. The difference in glucocorticoid sensitivity may indicate that the two surfactant protein genes contain glucocorticoid response elements with different affinities for receptor.

Journal Issue
Volume 14 of Issue 6