Assessment of a storage system to deliver uninterrupted therapeutic oxygen during power outages in resource-limited settings.
Access to therapeutic oxygen remains a challenge in the effort to reduce pneumonia mortality among children in low- and middle-income countries. The use of oxygen concentrators is common, but their effectiveness in delivering uninterrupted oxygen is gated by reliability of the power grid. Often cylinders are employed to provide continuous coverage, but these can present other logistical challenges. In this study, we examined the use of a novel, low-pressure oxygen storage system to capture excess oxygen from a concentrator to be delivered to patients during an outage. A prototype was built and tested in a non-clinical trial in Jinja, Uganda. The trial was carried out at Jinja Regional Referral Hospital over a 75-day period. The flow rate of the unit was adjusted once per week between 0.5 and 5 liters per minute. Over the trial period, 1284 power failure episodes with a mean duration of 3.1 minutes (range 0.08 to 1720 minutes) were recorded. The low-pressure system was able to deliver oxygen over 56% of the 4,295 power outage minutes and cover over 99% of power outage events over the course of the study. These results demonstrate the technical feasibility of a method to extend oxygen availability and provide a basis for clinical trials.