Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells.
BACKGROUND
Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound palmitoleoyl moiety in the N-terminal domain.
RESULTS
By combining murine Wnt3a with phospholipid and apolipoprotein A-I, ternary complexes termed nanodisks (ND) were generated. ND-associated Wnt3a is soluble in the absence of detergent micelles and gel filtration chromatography revealed that Wnt3a co-elutes with ND. In signaling assays, Wnt3a ND induced β-catenin stabilization in mouse fibroblasts as well as hematopoietic stem and progenitor cells (HSPC). Prolonged exposure of HSPC to Wnt3a ND stimulated proliferation and expansion of Lin(-) Sca-1(+) c-Kit(+) cells. Surprisingly, ND lacking Wnt3a contributed to Lin(-) Sca-1(+) c-Kit(+) cell expansion, an effect that was not mediated through β-catenin.
CONCLUSIONS
The data indicate Wnt3a ND constitute a water-soluble transport vehicle capable of promoting ex vivo expansion of HSPC.